
Programming with PHP and MySQL

UNIT -1

1.1 History of PHP

 PHP (PHP: Personal Home Page) was created by Rasmus Lerdorf in It was

initially developed for HTTP usage logging and server-side form generation

in Unix.

 PHP 2 (1995) transformed the language into a Server-side embedded

scripting language. Added database support, file uploads, variables, arrays,

recursive functions, conditionals, iteration, regular expressions, etc.

 PHP 3 (1998) added support for ODBC data sources, multiple platform

support, protocols and new parser written by Zeev Suraski and Andi

Gutmans .

 PHP 4 (2000) became an independent component of the web server for

added efficiency. The parser was renamed the Zend Engine. Many security

features were added.

 PHP 5 (2004) adds Zend Engine II with object oriented programming, robust

XML support using the libxml2 library, SOAP extension for interoperability

with Web Services, SQLite has been bundled with PHP

1.2Features of PHP

 Simple

It is very simple and easy to use, compared to another

scripting language. This is widely used all over the world.

 Interpreted

It is an interpreted language, i.e. there is no need for

compilation.

 Faster

It is faster than other scripting languages e.g. asp and jsp.

 Open Source

Open source means you no need to pay for using PHP,

you can free download and use.

 Platform Independent

PHP code will be run on every platform, Linux, Unix,

Mac OS X, Windows.

 Flexibility

PHP is known for its flexibility and embedded nature as it

can be well integrated with HTML, XML, Javascript and

many more. PHP can run on multiple operating systems

likeWindows, Unix, Mac OS, Linux, etc.

 Case Sensitive

PHP is case sensitive scripting language at the time

of variable declaration. In PHP, all keywords (e.g. if, else,

while, echo, etc.), classes, functions, and user-defined

functions are NOT case-sensitive.

1.3 Variables

 Variables are used to store both numeric and non numeric data.

 The content of variable can be altered during program execution

 variables can be compared and manipulated using operators.

 All variables in PHP are denoted with a leading dollar sign ($).

 The variable name must begin with a letter or the underscore character.

 A variable name can only contain alpha-numeric characters and underscores

(A-z, 0-9, and _)

 PHP has a total of eight data types which we use to construct our

variables -

1. Integers - are whole numbers, without a decimal point,

like 4195.

2. Doubles - are floating-point numbers, like 3.14159 or

49.1.

3. Booleans - have only two possible values either true or

false.

4. NULL - is a special type that only has one value: NULL.

5. Strings - are sequences of characters, like 'PHP supports

string operations.'

6. Arrays - are named and indexed collections of other

values.

7. Objects - are instances of programmer-defined classes,

which can package up both other kinds of values and

functions that are specific to the class.

8. Resources - are special variables that hold references to

resources external to PHP (such as database connections).

 Assigning and Using Variables Values

 To assign a value to a variable , use assign operator (=)

symbols.

 = operator assigns a value to a variable.

<?php

$today= “Aug 8 2020”;

Echo “Today is $today”;

?>

 PHP supports number of specialize functions to check if a variable or value

belong to a specific type

1. is_bool()

2. is_string()

3. is_numberic()

4. is_float()

5. is_int()

6. is_null()

7. is_array()

 Echo() function is used to print data to standard output.

Example of Integer values

<html>

<head><title>Example</title></head>

<body>

<?php

// define variable

$first = 100;

$second = 200;

$third = $first + $second;

// print output

echo "Sum = "$third;

?>

</body>

<html>

Output: Sum = 300

Example of string values

<?php

$txt = "W3Schools.com";

echo "I love " . $txt . "!";

?>

Output:

I love W3Schools.com!

 NULL Value

 Null is a special data type which can have only one value: NULL.

 A variable of data type NULL is a variable that has no value assigned to it.

 If a variable is created without a value, it is automatically assigned a value

of NULL.

<?php

$x = "Hello world!";

$x = null;

echo $x;

?>

Output: NULL

1.4 Statement Operators

 Operators are used to perform operations on variables and values.

 PHP divides the operators in the following groups:

1. Arithmetic operators

2. Assignment operators

3. Comparison operators

4. Increment/Decrement operators

5. Logical operators

6. String operators Value

1.Arithmetic Operators

 The PHP arithmetic operators are used with numeric values to perform

common arithmetical operations, such as addition, subtraction,

multiplication etc.

2.Assignment Operators

 The PHP assignment operators are used with numeric values to write a value

to a variable.

 The basic assignment operator in PHP is "=".

 It means that the left operand gets set to the value of the assignment

expression on the right.

 3. Comparison Operators

 The PHP comparison operators are used to compare two values (number or

string):

4.Increment / Decrement Operators

 The PHP increment operators are used to increment a variable's value.

 The PHP decrement operators are used to decrement a variable's value.

5. Logical Operators

 The PHP logical operators are used to combine conditional statements.

6. String Operators

 PHP has two operators that are specially designed for strings.

Example :

<?php

$txt1 = "Hello";

$txt2 = " world!";

echo $txt1 . $txt2;

?>

Output:

Hello world!

1.5 Conditional Statement

 A Conditional Statement enables you to test whether a specific condition is

true or false and to perform different actions on the basis of the test result.

1. Using if () Statement,

In PHP, the simplest form of conditional statement is the if() statement, which

looks like this:

<?php

If(conditional test) „³ which evaluate either true or false

{

do this; „³ if true within the curly braces is executed

}

?>

Example

<?php

$mark = 120;

if($mark >= 80)

{

echo "you have an A";

}

?>

Output:

you have an A

 PHP also offer if - else(),used to defines an alternate block of code that get

executed when the conditional expression in if () statement evaluates as

false.

<?php

If(conditional test) „³ which evaluate either true or false

{

do this; „³ if true within the curly braces is executed

}

else

{

do this „³ if false within the curly braces is executed

} ?>

Example

<?php

$mark = 60;

if($mark >= 80)

{

echo "you have an A";

}

else

{

echo " you have an B";

}

?>

Output:

you have an B

 PHP also provide you with a way handling multiple possibilities the if-else

is-else() construct.

 This construct consists of listing number of possible results, one after

another, specifying the action to be taken for each.

if (condition1)

{

//code 1 to be executed

}

elseif(condition2)

{

//code 2 to be executed

}

else

{

//code to be executed if code 1 and code 2 are not

}

2. Switch() Statement

 The switch statement is very similar to the if...else statement.

 But in the cases where your conditions are complicated like you need to

check a condition with multiple constant values, a switch statement is

preferred to an if...else.

 The examples below will help us better understand the switch statements.

switch (n)

{

case constant1:

// code to be executed if n is equal to constant1;

break;

case constant2:

// code to be executed if n is equal to constant2;

break;

. . . default:

// code to be executed if n doesn't match any

constant

}

1.6 Nesting Conditional Statement

 To handle multiple conditions, you can “nest” conditional statements include

each other.

 It structure will look like

if (expression 1)

{

if (expression 2)

{

if (expression 3)

{

// statements 1

}

}

}

1.7 Merging Forms and Their Result

 Normally, when creating and processing forms in PHP, you would place

the HTML form in one file and handle form processing through a separate

PHP Script.

 Example you have seen so far have worked.

 With the power of conditional statement at your disposal, you can combine

both pages into one.

 To do this, assign a name to the form’s SUBMIT control and then check

whether the special $_POST container variable contains that name when

script first loads up.

 You can use a single PHP script to generate both initial form and post

submission output.

Example:

<html>

<head><title>Merging Form</title>

</head>

<body>

<? PHP

//if the SUBMIT variable does not exist

// FORM has not been submitted

//Display initial page

If (!$_POST[‘submit’])

{

?>

<form action =“<?=$_SERVER[‘PHP_SELF’]?>” method=“post”>

Enter Number: <input name=“number” size=“2”>

<input type=“submit” name=“submit” value=“Go”>

</form>

</body>

</html>

1.8 Repeating Action with LOOPS

 A LOOP is a control structure that enables you to repeat the same set of

statement or commands over and over again.

 The actual number of repetitions may be dependent on a number you

specify or fulfillment of a certain condition or set of conditions.

1. Using While() Loop:

 The first and simplest to loop learn in PHP is called While() Loop.

 With this loop type, so long as conditional expression specified evaluates to

true, the loop will continue to execute.

 When Condition become false, the loop broken and the statement will

executed.

2. Using the do() Loop

 The do...while loop will always execute the block of code once, it will then

check the condition, and repeat the loop while the specified condition is true.

Syntax:

<?php

do

{

code to be executed;

} while (condition is true);

?>

Example

<?php

$x = 1;

do {

echo "The number is: $x
";

$x++;

} while ($x <= 5);

?>

Output:

The number is: 1

The number is: 2

The number is: 3

The number is: 4

The number is: 5

3. Using the for() Loop

 The for loop - Loops through a block of code a specified number of times.

Syntax

<?php

for (init counter; test counter; increment counter)

{

code to be executed for each iteration;

}

?>

Parameters:

 init counter: Initialize the loop counter value

 test counter: Evaluated for each loop iteration. If it evaluates to TRUE, the

loop continues. If it evaluates to FALSE, the loop ends.

 increment counter: Increases the loop counter value

1.9 Controlling Loop Iteration With Break And Continue

1. Break

 The break statement can be used to jump out of a loop.

2. Continue

 The continue statement breaks one iteration (in the loop), if a specified

condition occurs, and continues with the next iteration in the loop.

Unit – II

2.1 Arrays

 An array is a data structure that stores one or more similar type of values in a

single variables.

 If you have a list of items (a list of car names, for example), storing the cars

in single variables could look like this:

$cars1 = "Volvo";

$cars2 = "BMW";

$cars3 = "Toyota";

 An array can be created using the array() language construct.

 There are three different kind of arrays:

1. Indexed arrays - These arrays can store numbers, strings and any object but

their index will be represented by numbers. By default array index starts from zero.

ex: $car[0]=“Nano”,

$car[1]=“Audi”,

$car[2]=“Hundai”

2. Associative arrays - Associative array will have their index as string so that you

can establish a strong association between key and values.

ex: $car[N]=“Nano”, $car[A]=“Audi”, $car[H]=“Hundai”

3. Multidimensional arrays - Arrays containing one or more arrays

ex: $myarray = array(

array("Ankit", "Ram", "Shyam"),

array("Unnao", "Trichy", "Kanpur")

);

2.2 Creating an array

 To define an array variables,name it using standard PHP variables rules and

populate it with elements using array() function as follow:

<?php

//define an array

$flavors =

array(‘strawberry’,’grape’,’vanilla’,’chocolate’)

?>

 An alternative way to defines an array is by specifying values for each

element using index notation like this:

<?php

//define an array

$flavors[0] = ‘strawberry’,

$flavors[1] =‘grape’

$flavors[2] =’vanilla’

$flavors[3] =‘chocolate’

?>

 To create an associative array, use keys instead of numeric indices:

<?php

//define an array

$flavors[S] = ‘strawberry’,

$flavors[G] =‘grape’

$flavors[V] =’vanilla’

$flavors[C] =‘chocolate’

?>

2.3 Modifying Arrays

 You can modify the values in arrays as easily as other variables. One way is

to access an element in an array simply by referring to it by index.

 For example, say you have this array:

$fruits[0] = "pineapple";

$fruits[1] = "pomegranate";

$fruits[2] = " apple";

 Now we want to change the value

of $fruits[1] to "watermelon“ then give as follow:

$fruits[0] = "pineapple";

$fruits[1] = "pomegranate";

$fruits[2] = " apple ";

$fruits[1] = "watermelon";

 If you want to add a new element, "grapes", to the end

of the array as follows:

$fruits[0] = "pineapple";

$fruits[1] = "pomegranate";

$fruits[2] = " apple ";

$fruits[1] = "watermelon";

$fruits[] = "grapes";

 Example program as follows:

2.4 Processing Arrays with Loops

• The process the data in PHP array with loop over it using any loop constructs.

• The for () loop is used through the array, extract the elements from it using index

and display them one after other in an unordered list.

• The sizeof () function is to return the size of array.

1.The foreach() Loop

 The foreach() loop runs once for each element of array, moving forward

through the array on each iteration.

 On each run, the statements within curly braces are executed and the

currently selected array element is made available through a loop variable.

 Foreach() loop doesn’t need a counter or call to sizeof().

 It keeps track of its position in the array automatically.

Example:

<?php

$shoppinglist=array('eye','wing','tail','leg');

foreach ($shoppinglist as $item)

{

echo "$item";

}

?>

OUTPUT:

. eye

. wing

. tail

. leg

2.5 Grouping Form Selections with Arrays

 Uses arrays and loops also come in handy when processing form in PHP.

 If you have a group of related checkboxes and a multiselect list, you can

use an array to capture all the selected form values in a single variable.

Using Array Functions

 The array_keys() and array_values() functions come in handy to get a list of

all keys and values within array.

 The print_r() function prints the information about a variable in a more

human-readable way.

The following examples

<?php

//define an array

$a=array("Volvo"=>"XC90","BMW"=>"X5","Toyota"=>"Highlander");

echo "array key
";

print_r(array_keys($a));

echo "
array values
";

print_r(array_values($a));

?>

OUTPUT:

array key

Array ([0] => Volvo [1] => BMW [2] => Toyota)

array values

Array ([0] => XC90 [1] => X5 [2] => Highlander)

 The is_array() function checks whether a variable is an array or not.

 This function returns true (1) if the variable is an array, otherwise it returns

false/nothing.

Syntax

is_array(variable);

Variable „³Required. Specifies the variable to

check

Example

<?php

$a=array("Volvo"=>"XC90","BMW"=>"X5","To

yota"=>"Highlander");

echo is_array($a);

?>

OUTPUT:

1

 The list() function assigns array elements to variables.

 Example of list() function

<?php

$a=array("Volvo","BMW","Toyota");

list($a1,$a2,$a3)=$a;

echo $a2;

?>

OUTPUT:

BMW

 The extract() function imports variables into the local symbol table from an

array.

 This function uses array keys as variable names and values as variable

values.

 Syntax

extract(array)

Array --> Required. Specifies the array to use

Example:

<?php

$my_array = array("a" => "Cat","b" =>

"Dog", "c" => "Horse");

extract($my_array);

echo "\$a = $a; \$b = $b; \$c = $c";

?>

Output: $a = Cat; $b = Dog; $c = Horse

2.6 Creating User Defined Functions

 A Function is nothing but a 'block of statements' which generally performs a

specific task and can be used repeatedly in our program.

 This 'block of statements' is also given a name so that whenever we want to

use it in our program/script, we can call it by its name.

 In PHP there are thousands of built-in functions which we can directly use

in our program/script.

 PHP also supports user defined functions, where we can define our own

functions.

 we can define our own functions in our program and use those functions.

 Syntax:

function function_name()

{

// function code statements

}

 Few Rules to name Functions

1. A function name can only contain alphabets, numbers and underscores. No

other special character is allowed.

2. The name should start with either an alphabet or an underscore. It should not

start with a number.

3. And last but not least, function names are not case-sensitive.

4. The opening curly brace { after the function name marks the start of the function

code, and the closing curly brace } marks the end of function code.

<?php

// defining the function

function greetings()

{

echo "Merry Christmas and a Very Happy New Year";

}

echo "Hey Martha
";

// invoking the function

greetings();

echo "Hey Jon
";

// invoking the function again

greetings();

?>

Example program to defining and invoking

functions

Output:

Hey Martha

Merry Christmas and a Very Happy New Year

Hey Jon

Merry Christmas and a Very Happy New Year

2.7 Advantages of User-defined Functions

 Reuseable Code: As it's clear from the example above, you write a function

once and can use it for a thousand times in your program.

 Less Code Repetition: Rather than repeating all those lines of code again

and again, we can just create a function for them and simply call the

function.

 Easy to Understand: Using functions in your program, makes the code more

readable and easy to understand.

Using Arguments and Return Values

 We can even pass data to a function, which can be used inside the function

block.

 This is done using arguments.

 An argument is nothing but a variable.

 Arguments are specified after the function name, in parentheses, separated

by comma.

 When we define a function, we must define the number of arguments it will

accept and only that much arguments can be passed while calling the

function.

Syntax:

<?php

/* we can have as many arguments as we

want to have in a function */

function function_name(argument1,

argument2)

{

// function code statements

}

?>

Example

<?php

// defining the function with argument

function greetings($festival)

{

echo "Wish you a very Happy $festival";

}

echo "Hey Jai
";

// invoking the function

greetings("Diwali");

// next line echo "
";

echo "Hey Jon
";

// invoking the function again

greetings("New Year");

?>

Output:

Hey Jai

Wish you a very Happy Diwali

Hey Jon

Wish you a very Happy New Year

2.8 Default Function Arguments

 Sometimes function arguments play an important role in the function code

execution.

 In such cases, if a user forgets to provide the argument while calling the

function, it might lead to some error.

 To avoid such errors, we can provide a default value for the arguments

which is used when no value is provided for the argument when the function

is called.

 Example

<?php

// defining the function with default argument function

greetings($festival = "Life")

{

echo "Wish you a very Happy $festival";

}

echo "Hey Jai
";

greetings("Diwali");

echo "
";

echo "Hey Jon
";

greetings();

?>

2.9 Function Overloading

 Function overloading allows you to have multiple different variants of one

function, differentiated by the number and type of arguments they take.

 For example, we defined the function add() which takes two arguments, and

return the sum of those two. What if we wish to provide support for adding 3

numbers.

Example

<?php

// add function with 2 arguments

function add($a, $b)

{

$sum = $a + $b;

return $sum;

}

function add1($a, $b, $c)

{

$sum1 = $a + $b + $c;

return $sum1;

}

echo "5 + 10 = " . add(5, 10) . "
";

// calling add with 3 arguments

echo "5 + 10 + 15 = " . add1(5, 10, 15) . "
";

?>

Output:

5 + 10 = 15

5 + 10 + 15 = 30

2.10 Using Files

 File handling is an important part of any web application. You often need to

open and process a file for different tasks.

 PHP has several functions for

i. fopen() function is unable to open the specified file.

ii. fwrite() function is used to write to a file.

iii.fread() function reads from an open file.

iv. fclose() function is used to close an open file.

i. fopen():

Syntax:

fopen(filename, mode)

 Filename- Required. Specifies the file or URL to open

 Mode - Required. Specifies the type of access you require to the

file/stream.There are different types of mode are listed below:

ii. fread()

Syntax

fread (file, length)

 File - Required. Specifies the open file to read from

 length - Required. Specifies the maximum number of bytes to read

Ex: fread ($file,"10");

<?php

$myfile =

fopen("webdictionary.txt", "r")

echo fread($myfile,filesize("webdictionary.txt"));

fclose($myfile);

?>

iii. fwrite()

Syntax:

fwrite(file, string, length)

 File - Required. Specifies the open file to write to

 string - Required. Specifies the string to write to the open file

 length -Optional. Specifies the maximum number of bytes to write

 Ex: echo fwrite($file,"Hello World. Testing!");

iv. fclose()

Syntax:

fclose(file)

 file - Required. Specifies the file to close

Ex: fclose($file);

Example:

<?php

$file = fopen("test.txt","w");

echo fwrite($file,"HelloWorld. Testing! ");

fclose($file);

?>

2.11 Session

 When you work with an application, you open it, do some changes, and then

you close it.

 This is much like a Session. The computer knows who you are. It knows

when you start the application and when you end.

 But on the internet there is one problem: the web server does not know who

you are or what you do, because the HTTP address doesn't maintain state.

 Session variables solve this problem by storing user information to be used

across multiple pages (e.g. username, favorite color, etc).

 By default, session variables last until the user closes the browser.

 Session variables hold information about one single user, and are available

to all pages in one application.

Start a PHP Session

 A session is started with the session_start() function.

 Session variables are set with the PHP global variable: $_SESSION.

 The session_start() function must be the very first thing in your document.

Before any HTML tags.

Example

<?php

// Start the session

session_start();

?>

<!DOCTYPE html>

<html>

<body>

<?php

// Set session variables

$_SESSION["favcolor"] = "green";

$_SESSION["favanimal"] = "cat";

echo "Session variables are set.";

?>

</body>

</html>

Get PHP Session Variable Values

 Session variables are not passed individually to each new page, instead

they are retrieved from the session we open at the beginning of each page

(session_start()).

 All session variable values are stored in the global $_SESSION variable.

Example

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<body>

<?php

// Echo session variables that were set on previous page

echo "Favorite color is " . $_SESSION["favcolor"] . ".
";

echo "Favorite animal is " . $_SESSION["favanimal"] . ".";

?>

</body>

</html>

Destroy a PHP Session

 To remove all global session variables and destroy the session, use

session_unset() and session_destroy():

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<body>

<?php

// remove all session variables

session_unset();

// destroy the session

session_destroy();

?>

</body>

</html>

2.12 Cookie

 A cookie is often used to identify a user.

 A cookie is a small file that the server embeds on the user's computer.

„«Each time the same computer requests a page with a browser, it will send the

cookie too.

 With PHP, you can use both create and retrieve cookie values.

 Create Cookies With PHP

 A cookie is created with the setcookie() function.

 Syntax:

 setcookie(name, value, expire, path, domain, secure);

 Only the name parameter is required. All other parameters are optional.

 Here is the detail of all the arguments -

 Name - Set of name and values of the cookie

 Value - Sets the value of the named variable and is the content that you

actually want to store.

 Expiry - Sets the date and time at which the cookie expries.

 Path - This specifies the directories for which the cookie is valid. A single

forward slash character permits the cookie to be valid for all directories.

 Domain - This can be used to specify the domain name in very large

domains and must contain at least two periods to be valid.

 Security - This can be set to 1 to specify that the cookie should only be sent

by secure transmission using HTTPS otherwise set to 0 which mean cookie

can be sent by regular HTTP.

 Example

<?php

setcookie("name", "John Watkin", time()+3600, "/","", 0);

setcookie("age", "36", time()+86400, "/", "", 0);

?>

OUTPUT:

Time: 60 sec * 60 mins = 3600

Time: 60sec * 60 mins* 24 hours = 86,400

Retrieving Cookie Data

 Once cookie has been sent for a domain, it becomes available in the special

$_COOKIE array, and its value may be accessed using array notation.

Example:

<? Php

If($_COOKIE[‘name’])

{

Echo “Welcome to ” . $_COOKIE[‘name’];

}

Else

{

Echo ‘Cookie not found”;

}

Deleting Cookie

 To delete a cookie, simply use setcookie() with its name to set the cookie’s

expiry date to a value in the past.

<?php

Setcookie(`name`,``, time()-10000,’/’);

?>

2.13 Dealing with Dates and Times

 The date/time functions allow you to get the date and time from the server

where your PHP script runs.

 You can then use the date/time functions to format the date and time in

several ways.

 The PHP date() function is used to format a date and/or a time.

 The PHP date() function formats a timestamp to a more readable date and

time.

 Syntax :

(format,timestamp)

format - Required. Specifies the format of the timestamp

timestamp - Optional. Specifies a timestamp. Default is the current date and time.

 A timestamp is a sequence of characters, denoting the date and/or

time at which a certain event occurred.

Get a Date

 The required format parameter of the date() function specifies how to

format the date (or time).

 Here are some characters that are commonly used for dates:

d - Represents the day of the month (01 to 31)

m - Represents a month (01 to 12)

Y - Represents a year (in four digits)

l (lowercase 'L') - Represents the day of the week

 Other characters, like"/", ".", or "-" can also be inserted between the

characters to add additional formatting.

 The example below formats today's date in three different ways:

<?php

echo "Today is " . date("Y/m/d") . "
";

echo "Today is " . date("Y.m.d") . "
";

echo "Today is " . date("Y-m-d") . "
";

echo "Today is " . date("l");

?>

Output:

Today is 2020/10/07

Today is 2020.10.07

Today is 2020-10-07

Today is Wednesday

Create a Date With mktime()

 The optional timestamp parameter in the date() function specifies a

timestamp. If omitted, the current date and time will be used.

 The PHP mktime() function returns the Unix timestamp for a date. The Unix

timestamp contains the number of seconds between the Unix Epoch

(January 1 1970 00:00:00 GMT) and the time specified.

 Syntax

mktime(hour, minute, second, month, day, year)

 The example below creates a date and time with the date() function from a

number of parameters in the mktime() function:

 Example

<?php

$d=mktime(11, 14, 54, 8, 12, 2014);

echo "Created date is " . date("Y-m-d h:i:sa", $d);

?>

 getdate() Function

 The getdate() function returns date/time information of a timestamp or the

current local date/time.

 Syntax

getdate(timestamp)

Timestamp - Optional. Specifies an integer Unix timestamp. Default is the current

local time (time())

Example

<?php

$current = getdate();

$current_time=$current['hours'] . ':' . $current['minutes'] .

':' . $current['seconds'];

$current_date=$current['mday'] . ':' . $current['mon'] . ':' .

$current['year'];

echo "Time $current_time</br>";

echo "Date $current_date";

?>

Output:

Time 2:27:15

Date 7:10:2020

2.14 Executing External Programs

 To run an external program from your Php script, place the program

command line within back tricks (``)

 The output of the command can also be assigned to a variable for further

use within the script.

 Example which runs the unix du command to calculate disk usage:

<?php

$output = `/bin/du –s/tmp`;

echo $output;

?>

 Escapeshellcmd - Escape shell metacharacters

Syntax

escapeshellcmd (string $command)

 escapeshellcmd() escapes any characters in a string that might be used to

trick a shell command into executing arbitrary commands.

 This function should be used to make sure that any data coming from user

input is escaped before this data is passed to the exec() or system()

functions, or to the backtick operator.

Command -- >The command that will be escaped.

 Example

<?php

$escaped_command = escapeshellcmd($command);

system($escaped_command);

?>

 Escapeshellarg - Escape a string to be used as a shell argument

 Syntax

escapeshellarg (string $arg)

 escapeshellarg() adds single quotes around a string and quotes/escapes any

existing single quotes allowing you to pass a string directly to a shell

function and having it be treated as a single safe argument.

 This function should be used to escape individual arguments to shell

functions coming from user input.

 Arg - The argument that will be escaped.

UNIT-3

FILE HANDLING

3.1 Opening files using fopen

 fopen() function is Used to open the specified file.

fopen(filename, mode)

 Filename- Required. Specifies the file or URL to open

 Mode - Required. Specifies the type of access you require to the file/stream.

 There are different types of mode are listed below:

3.2 Looping over a files content with

Feof()

 The feof() function is used for looping through the content of a file if the

size of content is not known beforehand.

 The feof() function returns True if end-of-file has been reached or if an

error has occurred. Else it returns False.

 Syntax:

feof($file)

Parameters: The feof() function in PHP accepts only one parameter which is $file.

This parameter specifies the file which has to be checked for end-of-file.

 Return Value: It returns TRUE if end-of-file has been reached or if an error has

occurred. Else it returns False.

3.3 Reading text from a file using fgets

fgets() function

 The fgets() function in PHP is an inbuilt function which is used to return a

line from an open file.

 It is used to return a line from a file pointer and it stops returning at a

specified length, on end of file(EOF) or on a new line, whichever comes

first.

 The file to be read and the number of bytes to be read are sent as

parameters to the fgets() function and it returns a string of length -1 bytes

from the file pointed by the user.

 It returns False on failure.

 Syntax:

 fgets(file, length)

 Parameters Used: The fgets() function in PHP accepts two parameters.

file : It specifies the file from which characters have to be extracted.

length : It specifies the number of bytes to be read by the fgets() function. The

default value is 1024 bytes.

Return Value : It returns a string of length -1 bytes from the file pointed by the

user or False on failure.

3.4 Closing A File

 The fclose() function closes an open file.

 Syntax

fclose(file)

Parameter Values :

File - Required. Specifies the file to close

Example : Open and close file "test.txt":

<?php

$file = fopen("test.txt", "r");

fclose($file);

?>

 EXAMPLE:

 <?php

// a file is opened using fopen() function

$check = fopen("singleline.txt", "r");

$seq = fgets($check);

// Outputs a line of the file until

// the end-of-file is reached

while(! feof($check))

{

echo $seq ;

$seq = fgets($check);

}

// file is closed using fclose() function

fclose($check);

?>

 OUTPUT:

This file consists of only a single line.

Example

The singleline.txt contain ” hai how are you?”

<html>

<body>

<?php

$check = fopen("singleline.txt","r");

while(!feof($check))

{

echo fgets($check);

}

fclose($check);

?>

<html>

<body>

3.5 READING CHARACTER WITH fgetc () IN PHP

 The fgetc() function in PHP is an inbuilt function which is used to return a

single character from an open file. It is used to get a character from a given

file pointer.

 The file to be checked is used as a parameter to the fgetc() function and it

returns a string containing a single character from the file which is used as a

parameter.

 Syntax:

fgetc($file)

Parameters: The fgetc() function in PHP accepts only one parameter $file. It

specifies the file from which character is needed to be extracted.

Return Value: It returns a string containing a single character from the file which

is used as a parameter.

Example

 The file named gfg.txt contains the following text.

This is the first line.

This is the second line.

This is the third line.

Program:

<?php

$my_file = fopen("gfg.txt", "rw");

echo fgetc($my_file);

fclose($my_file);

?>

Output:

T

Program:

<?php

$my_file = fopen("gfg.txt", "rw");

while (! feof ($my_file))

{

echo fgetc($my_file);

}

fclose($my_file);

?>

Output:

This is the first line.

This is the second line.

This is the third line.

3.6 file_get_contents() Function

 The file_get_contents() function in PHP is an inbuilt function which is used

to read a file into a string.

 The function uses memory mapping techniques which are supported by the

server and thus enhances the performances making it a preferred way of reading

contents of a file.

The path of the file to be read is sent as a parameter to the function and it returns

the data read on success and FALSE on failure.

 Syntax:

file_get_contents($path, $include_path, $context, $start, $max_length)

 $path: It specifies the path of the file or directory you want to check.

 $include_path: It is an optional parameter which searches for a file in the

file in the include_path (in php.ini) also if it is set to 1.

 $context: It is an optional parameter which is used to specify a custom

context.

 $start: It is an optional parameter which is used to specify the starting

point in the file for reading.

 $max_length: It is an optional parameter which is used to specify the

number of bytes to be read.

 Return Value: It returns the read data on success and FALSE on failure.

Example

 The test.txt contain the data:

abcdefghijklmnopqrstuvwxyz0123456789

<?php

echo file_get_contents("test.txt");

?>

Output:

abcdefghijklmnopqrstuvwxyz0123456789

<html>

<body>

<?php

// Read 14 characters starting from the 21st

character

echo file_get_contents("test.txt", FALSE,

NULL, 20, 14);

?>

</body>

</html>

Output:

uvwxyz01234567

3.7 file_exists() Function

 The file_exists() function in PHP is an inbuilt function which is used to

check whether a file or directory exists or not.

 The path of the file or directory you want to check is passed as a parameter

to the file_exists() function which returns True on success and False on

failure.

 Syntax:

 file_exists($path)

 Parameters: The file_exists() function in PHP accepts only one parameter $path.

It specifies the path of the file or directory you want to check.

Return Value: It returns True on success and False on failure.

 Example:

<?php

// checking whether file exists or not

echo file_exists("test.txt");

?>

Output : 1

<?php

$myfile ="test.txt";

if (file_exists($myfile)) {

echo "$myfile exists!";

} else {

echo "$myfile does not exist!";

}

?>

Output: test.txt exists

3.8 fscanf() function

 The fscanf() function parses input from an open file according to a specified

format. It returns the values parsed as an array, if only two parameters

were passed.

 Syntax

 fscanf(file_pointer, format, mixed)

 Parameters

 file_pointer - A file system pointer resource created using fopen().

 format - Specify the format. Here are the values:

Example

 The new.txt contain the text :

ram 5

siva 3

<?php

$handle = fopen("new.txt", "r");

while ($playerrank = fscanf($handle, " %s\t%d\n "))

{

list ($name, $rank) = $playerrank;

echo "$name got rank $rank.
";

}

fclose($handle);

?>

Output:

ram got rank 5.

siva got rank 3.

3.9 parse_ini_file() Function

 The parse_ini_file() function parses a configuration (ini) file and returns the

settings.

 This function can be used to read in your own configuration files, and has

nothing to do with the php.ini file.

 The following reserved words must not be used as keys for ini files: null,

yes, no,true, false, on, off, none. Furthermore, the following reserved

characters must not be used in the key: {}|&~!()^".

 Syntax

parse_ini_file(file, process_sections, scanner_mode)

 Return- The parse_ini_file() function returns the settings as an associative array

success. It returns FALSE on failure.

 Let’s say the content of our “demo.ini” is -

[names]

one = Anne

two = Katie

three = Tom

[urls]

host1 = “https://www.example.com”

host2 = "https://www.example2.com"

„H Let’s say the content of our “parse ini.php” is

<?php

print_r(parse_ini_file("demo.ini"));

?>

Output:

Array ([one] => Anne

[two] => Katie

[three] => Tom

[host1] => https://www.example.com

[host2] => https://www.example2.com)

3.10 Getting file information with stat()

 The stat() function returns information about a file.

 The results from this function will differ from server to server.

 The array may contain the number index, the name index, or both.

 The result of this function is cached.

 Use clearstatcache() to clear the cache.

 Syntax

 stat(filename)

 The function returns an array with the below given elements.

 [0] or [dev] - Device number

 [1] or [ino] - Inode number

 [2] or [mode] - Inode protection mode

 [3] or [nlink] - Number of links

 [4] or [uid] - User ID of owner

 [5] or [gid] - Group ID of owner

 [6] or [rdev] - Inode device type

 [7] or [size] - Size in bytes

 [8] or [atime] - Last access time as Unix timestamp

 [9] or [mtime] - Last modified time as Unix timestamp

 [10] or [ctime] - Last inode change time as Unix timestamp

 [11] or [blksize] - Blocksize of filesystem IO

 [12] or [blocks] - Number of blocks allocated

 Example:

<?php

print_r(stat("demo.txt"));

?>

OUTPUT:

 Example:

<?php

$test = stat('new.txt');

echo 'Access time: ' .$test['atime'];

echo '
Modification time: ' .$test['mtime'];

echo '
Device number: ' .$test['dev'];

?>

Output:

Access time: 1602748187

Modification time: 1603208669

Device number: 2

3.11 fseek() Function

 The fseek() function in PHP is an inbuilt function which is used to seek in an

open file.

 It moves the file pointer from its current position to a new position, forward

or backward specified by the number of bytes.

 It returns 0 on success, else returns -1 on failure.

 Syntax:

fseek ($file, $offset, $whence)

Parameters: The fseek() function in PHP accepts three parameters as

described below.

 $file: It is a mandatory parameter which specifies the file.

 $offset: It is a mandatory parameter which specifies the new position of the

pointer. It is measured in bytes from the beginning of the file.

 $whence: It is an optional parameter which can have the following possible

values-

 SEEK_SET: It sets position equal to offset.

 SEEK_CUR: It sets position to current location plus offset.

 SEEK_END: It sets position to EOF plus offset. To move to a position before

EOF, the offset must be a negative value.

Example:

<?php

// Opening a file

$myfile = fopen("gfg.txt", "w");

// reading first line

fgets($myfile);

// moving back to the beginning of the file

echo fseek($myfile, 0);

// closing the file

fclose($myfile);

?>

Output: 0

3.12 Copying Files With Copy

 The copy() function in PHP is an inbuilt function which is used to make a

copy of a specified file.

 It makes a copy of the source file to the destination file and if the

destination file already exists, it gets overwritten.

 The copy() function returns true on success and false on failure.

 Syntax:

copy(from_file, to_file, context)

Example:

<?php

echo

copy("test.txt","new.txt");

?>

Output:

1

<?php

// Copying gfg.txt to geeksforgeeks.txt

$srcfile = "test.txt";

$destfile = “copy.txt";

if (!copy($srcfile, $destfile))

{

echo "File cannot be copied! \n";

}

else

{

echo "File has been copied!";

}

?>

Output: File has been copied!

3.13 Deleting files

 To delete a file by using PHP is very easy.

 Deleting a file means completely erase a file from a directory so that

the file is no longer exist.

PHP has an unlink () function is used to delete a file.

Syntax

unlink($filename, $context);

Example

<?php

$myFile = "test5.txt";

unlink($myFile) or die("Couldn't delete file");

?>

<?php

$file_pointer = fopen(“gfg.txt”, “w”);

fwrite($file_pointer, 'A computer science portal

for geeks!');

fclose($file_pointer);

if (!unlink($file_pointer))

{

echo ("$file_pointer cannot be deleted due to an

error");

}

else {

echo ("$file_pointer has been deleted");

} ?>

Output:

gfg.txt has been deleted

3.14 Reading and Writing Binary Files

 With the basics of reading and writing text files complete, let's now turn our

attention to working with binary files.

 Unlike text files, binary files can be much harder both to work with and

debug because they are by their very nature unreadable by anything but a

computer.

 In PHP, writing binary files is done in the same manner as writing text files

(via the fputs() function) and therefore requires no explanation.

 In fact, the only difference (which has already been mentioned) is the use of

the b mode when the file is opened via fopen().

 Hence, this section will focus primarily on those functions relating to

reading binary data from a file and converting it into a form usable by PHP.

 Specifically, we will be constructing a function that will read the header

from a Zip-compressed file and determine the minimum version number

required to decompress the data.

 To accomplish this, we'll be examining the fseek(), fread(), and unpack()

functions.

 Already fseek(), fread(), is given write that notes here.

Unpack() function:

 The unpack() function is an inbuilt function in PHP which is used to unpack

from a binary string into the respective format.

 Syntax:

unpack($format, $data, $offset)

Example

<?php

var_dump (unpack("C*", "GEEKSFORGEEKS"));

?>

Output:

array(13) { [1]=> int(71) [2]=> int(69) [3]=> int(69)

[4]=> int(75) [5]=> int(83) [6]=> int(70) [7]=>

int(79) [8]=> int(82) [9]=> int(71) [10]=> int(69)

[11]=> int(69) [12]=> int(75) [13]=> int(83) }

3.15 Locking files

 The flock() function locks and releases a file.

 Syntax

flock(file, lock, block)

Example

<?php

$file = fopen("test3.txt","w+");

if (f lock($file,LOCK_EX)) {

fwrite($file,"Add some text to the file.");

ff lush($file);

// release lock

echo “successfully done";

}

else

{

echo "Error locking file!";

}

fclose($file);

?>

 Unit – 4

MySQL

 With PHP, you can connect to and manipulate databases.

 MySQL is the most popular database system used with PHP.

 The data in a MySQL database are stored in tables.

 A table is a collection of related data, and it consists of columns and rows.

What is MySQL?

 MySQL is a database system used on the web

 MySQL is a database system that runs on a server

 MySQL is ideal for both small and large applications

 MySQL is very fast, reliable, and easy to use

 MySQL uses standard SQL

 MySQL compiles on a number of platforms

 MySQL is free to download and use

 MySQL is developed, distributed, and supported by Oracle Corporation

 MySQL is named after co-founder Monty Widenius's daughter: My

4.1 Effectiveness of MySQL

 MySQL is a free-to-use, open-source database that facilitates effective

management of databases by connecting them to the software.

 It is a stable, reliable and powerful solution with advanced features like the

following:

1. Data Security

 MySQL is globally renowned for being the most secure and reliable

database management system used in popular web applications like

WordPress, Facebook ,Twitter etc.

 The data security and support for transactional processing that accompany

the recent version of MySQL, can greatly benefit any business especially if

it is an eCommerce business that involves frequent money transfers.

2. On-Demand Scalability

 MySQL offers unmatched scalability to facilitate the management of deeply

embedded apps using a smaller footprint even in massive warehouses that

stack terabytes of data.

 On-demand flexibility is the star feature of MySQL. This open source

solution allows complete customization to eCommerce businesses with

unique database server requirements.

3. High Performance

 MySQL features a distinct storage-engine framework that facilitates system

administrators to configure.

 Whether it is an eCommerce website that receives a million queries every

single day or a high-speed transactional processing system.

4. Round-the-clock Uptime

 MySQL comes with the assurance of 24X7 uptime and offers a wide range

of high availability solutions like specialized cluster servers and master/slave

replication configurations.

5. Comprehensive Transactional Support

 MySQL tops the list of robust transactional database engines available on

the market.

 With features like complete atomic, consistent, isolated, durable transaction

support, multi-version transaction support, and unrestricted row-level

locking, it is the go-to solution for full data integrity.

 It guarantees instant deadlock identification through server-enforced

referential integrity.

 6. Complete Workflow Control

 With the average download and installation time being less than 30 minutes,

MySQL means usability from day one.

 Whether your platform is Linux, Microsoft, Macintosh or UNIX, MySQL is

a comprehensive solution with self-management features that automate

everything from space expansion and configuration to data design and

database administration.

7. Reduced Total Cost of Ownership

 By migrating current database apps to MySQL, enterprises are enjoying

significant cost savings on new projects.

8. The Flexibility of Open Source

 The secure processing and trusted software of MySQL combine to provide

effective transactions for large volume projects.

 It makes maintenance, debugging and upgrades fast and easy while

enhancing the end-user experience.

4.2 Tools

 MySQL is a relational database management system. It provides a very fast,

multi-threaded, multi-user, and robust SQL (Structured Query Language)

database server.

 MySQL is the most popular open source database, and is the database

component of the LAMP software stack. LAMP consists of the Apache web

server, MySQL and PHP, the essential building blocks to run a general

purpose web server.

 MySQL is used and championed by many large organizations including

Google, Facebook, the BBC, Intel, Sun, SAP, Dell, AMD, Novell, Veritas

and many others.

 With the increasing popularity of MySQL, it is not surprising that

developers have written useful tools which help users to monitor, query,

administer, troubleshoot, and optimize MySQL databases.

 This article identifies 13 open source tools which help to reduce the

complexity associated with the powerful database software.

 One tool which is not featured in this article but warrants a mention is

sqlyog.

 It is an excellent utility to manage and administer MySQL.

 To provide an insight into the quality of software that is available, we have

compiled a list of 13 excellent MySQL tools.

 Hopefully, there will be something of interest for anyone interested in

managing MySQL databases with the minimum of fuss.

4.3 Prerequisites of MYSQL

You must satisfy the following prerequisites to create a connection with

the MySQL Adapter:

 Ensure that you have write permissions on the database.

 Ensure that you have the required permissions to run stored procedures and

packages and SQL statements against the MySQL Database.

 Know the database hostname or IP address and the port number.

 Know the database name.

 Know the username and password for connecting to the database.

 Download the mysql-connector-java-commercial-5.1.22-bin.jar to the host

on which the connectivity agent is installed.

1. Download the mysql-connector-java-commercial-5.1.22-bin.jar from

the MySQL Database site. Check the Oracle Integration Adapters

Certification matrix to identify the certified versions of the MySQL

Database.

2. Copy the JAR file to agenthome/thirdparty/lib.

3. Restart the connectivity agent.

If you do not download and install this JAR file, you receive a Check

agent status error when testing the connection on the Connections

page in Oracle Integration.

4.4 Databases

 Databases are useful for storing information categorically.A company may

have a database with the following tables:

 Employees

 Products

 Customers

 Orders

 PHP + MySQL Database System

 PHP combined with MySQL are cross-platform (you can develop in

Windows and serve on a Unix platform)

Database Queries

 A query is a question or a request.

 We can query a database for specific information and have a recordset

returned.

https://www.mysql.com/
http://www.oracle.com/technetwork/middleware/adapters/documentation/index.html
http://www.oracle.com/technetwork/middleware/adapters/documentation/index.html

 Look at the following query (using standard SQL):

SELECT LastName FROM Employees

 The query above selects all the data in the "LastName" column from

the "Employees" table.

Tables:

 Every database is composed of one or more tables.

 These tables, which structure data into rows and columns, are what

lend organization to the data.

 Here’s an example of what a typical table looks like:

 A table divides data into rows, with a new entry (or record) on every

row.

 The data in each row is further broken down into columns (or

fields),each of which contains a value for a particular attribute of that

data.

4.5 MySQL - Data Types

 You should use only the type and size of field you really need to use.

 For example, do not define a field 10 characters wide, if you know you are

only going to use 2 characters.

 These type of fields (or columns) are also referred to as data types, after

the type of data you will be storing in those fields.

 MySQL uses many different data types broken into three categories −

1. Numeric

 MySQL uses all the standard ANSI SQL numeric data types, so if you're

coming to MySQL from a different database system, these definitions will

look familiar to you.

 The following list shows the common numeric data types and their

descriptions

 INT − A normal-sized integer that can be signed or unsigned.You can

specify a width of up to 11 digits.

 TINYINT − A very small integer that can be signed or unsigned. If signed,

the allowable range is from -128 to 127.

 SMALLINT − A small integer that can be signed or unsigned. You can

specify a width of up to 5 digits.

 MEDIUMINT − A medium-sized integer that can be signed or

unsigned.You can specify a width of up to 9 digits.

 BIGINT − A large integer that can be signed or unsigned. You can specify

a width of up to 20 digits.

 FLOAT(M,D) − A floating-point number that cannot be unsigned. You can

define the display length (M) and the number of decimals (D).

 DOUBLE(M,D) − A double precision floating-point number that cannot be

unsigned. You can define the display length (M) and the number of

decimals (D).

 DECIMAL(M,D) − An unpacked floating-point number that cannot be

unsigned. Defining the display length (M) and the number of decimals (D)

is required. NUMERIC is a synonym for DECIMAL.

2. Date and Time

 The MySQL date and time datatypes are as follows −

 DATE − A date in YYYY-MM-DD format, between 1000-01-01 and 9999-

12-31.

 DATETIME − A date and time combination in YYYY-MM-DD

HH:MM:SS format.

 TIME − Stores the time in a HH:MM:SS format.

 YEAR(M) − Stores a year in a 2-digit or a 4-digit format. If the length is

specified as 2. If the length is specified as 4, then YEAR can be 1901 to

2155. The default length is 4.

3. String Types

 Although the numeric and date types are fun, most data you'll store will be

in a string format. This list describes the common string datatypes in

MySQL.

 CHAR(M) − A fixed-length string between 1 and 255 characters in length

right-padded with spaces to the specified length when stored. Defining a

length is not required, but the default is 1.

 VARCHAR(M) − A variable-length string between 1 and 255 characters in

length. For example, VARCHAR(25). You must define a length when

creating a VARCHAR field.

 ENUM − An enumeration, which is a fancy term for list. When defining an

ENUM, you are creating a list of items from which the value must be

selected

4.6 CREATE TABLE

 To create a table in MySQL, a CREATE TABLE statement is used.

 This statement is very complex because it requires defining all columns,

data types and other parameters that make a column.

 However, a table may be created with basic information only, and that

is column name(s) and data type(s).

 In such as case, other parameters will be set to their default values. Below

you can see a basic syntax for MySQL Table Creation.

CREATE TABLE emp (

emp_id INT AUTO_INCREMENT PRIMARY KEY,

emp_name VARCHAR(255),

salary INT

);

 This SQL statement creates the table employee with three fields, or columns,

with commas separating the information about each column.

 After the data type, you can specify other optional attributes for each

column:

 NOT NULL - Each row must contain a value for that column, null values

are not allowed

 DEFAULT value - Set a default value that is added when no other value is

passed

 UNSIGNED - Used for number types, limits the stored data to positive

numbers and zero

 AUTO INCREMENT - MySQL automatically increases the value of the

field by 1 each time a new record is added

 PRIMARY KEY - Used to uniquely identify the rows in a table. The

column with PRIMARY KEY setting is often an ID number, and is often

used with AUTO_INCREMENT

Insert Rows in table:

 After a database and a table have been created, we can start adding data in

them.

 Here are some syntax rules to follow:

 The SQL query must be quoted in PHP

 String values inside the SQL query must be quoted

 Numeric values must not be quoted

 The word NULL must not be quoted

 The INSERT INTO statement is used to add new records to a MySQL table:

INSERT INTO emp (emp_id, emp_name, salary)

VALUES (E01, 'Ram', 20000)";

INSERT INTO emp (emp_id, emp_name, salary)

VALUES (E02, 'Siva', 50000)";

Emp_id Emp_name salary

E01 Ram 20000

E02 Siva 50000

Update Data in table

 The UPDATE statement is used to update existing records in a table:

“UPDATE emp SET emp_name='rama' WHERE id=E01"

 The above examples update the record the emp_name as Rama where

id=E02 in the "emp" table.

Emp_id Emp_name salary

E01 Rama 20000

E02 Siva 50000

Delete Data in table

 The Delete statement is used to remove the data in the table.

DELETE FROM emp WHERE id=E02

 The above statement is used to delete the data where the id= 2

Emp_id Emp_name salary

E01 Rama 20000

Retrieving data

 The SQL SELECT command is used to fetch data from the MySQL

database. You can use this command at mysql> prompt as well as in any

script like PHP.

 Syntax

 SELECT field1, field2,...fieldN FROM table_name1, table_name2...

 [WHERE Clause]

 You can use one or more tables separated by comma to include various

conditions using a WHERE clause, but the WHERE clause is an optional

part of the SELECT command.

 You can fetch one or more fields in a single SELECT command.

 You can specify star (*) in place of fields. In this case, SELECT will return

all the fields.

 You can specify any condition using the WHERE clause.

 Example:

SELECT * FROM emp where emp_id=E01;

Emp_id Emp_name salary

E01 Rama 20000

4.7 Sorting And Filtering Retrieved Data

Sorting Data:

 We have seen the SQL SELECT command to fetch data from a MySQL

table.

 When you select rows, the MySQL server is free to return them in any

order, unless you instruct it otherwise by saying how to sort the result.

 But, you sort a result set by adding an ORDER BY clause that names the

column or columns which you want to sort.

 Syntax:

 The following code block is a generic SQL syntax of the SELECT

command along with the ORDER BY clause to sort the data from a

MySQL table.

SELECT field1, field2,...fieldN table_name1, table_name2...

ORDER BY field1, [field2...] [ASC [DESC]]

 You can sort the returned result on any field, if that field is being listed out.

 You can sort the result on more than one field.

 You can use the keyword ASC or DESC to get result in ascending or

descending order. By default, it's the ascending order.

 You can use the WHERE...LIKE clause in the usual way to put a condition.

 Example:

 SELECT * FROM emp ORDER BY salary DESC';

 The above query display the data in the table emp orderby desc as

follow.

Emp_id Emp_name salary

E02 Siva 50000

E01 Rama 20000

4.8 Aggregate functions

 An aggregate function performs a calculation on multiple values and returns

a single value.

 For example, you can use the AVG() aggregate function that takes multiple

numbers and returns the average value of the numbers.

 The following illustrates the syntax of an aggregate function:

 function_name(DISTINCT | ALL expression)

 In this syntax:

 First, specify the name of the aggregate function e.g., AVG(). See the list of

aggregate functions in the following section.

 Second, use DISTINCT if you want to calculate based on distinct values

or ALL in case you want to calculate all values including duplicates. The

default is ALL.

 Third, specify an expression that can be a column or expression which

involves column and arithmetic operators.

 The aggregate functions are often used with the GROUP BY clause to

calculate an aggregate value for each group e.g., the average value by the

group or the sum of values in each group.

 Example:

SELECT name , AVG(salary) FROM emp;

 The COUNT() function returns the number of the value in a set.

 For example, you can use the COUNT() function to get the number of

products in the products table as shown in the following query:

 SELECT

 COUNT(*) AS salary

https://www.mysqltutorial.org/mysql-group-by.aspx
https://www.mysqltutorial.org/mysql-count/

 FROM

 emp;

 The SUM() function returns the sum of values in a set.

 The SUM() function ignores NULL. If no matching row found,

the SUM() function returns NULL.

 To get the total order value of each product, you can use the SUM() function

in conjunction with the GROUP BY clause as follows:

SELECT

 SUM(salary) total

FROM

 Emp

Grouping data

 The GROUP BY clause groups a set of rows into a set of summary rows by

values of columns or expressions.

 The GROUP BY clause returns one row for each group.

 In other words, it reduces the number of rows in the result set.

 You often use the GROUP BY clause with aggregate functions such

as SUM, AVG, MAX, MIN, and COUNT.

 The aggregate function that appears in the SELECT clause provides

information about each group.

 Syntax:

SELECT

 c1, c2,..., cn, aggregate_function(ci)

FROM

 table

WHERE

 where_conditions

https://www.mysqltutorial.org/mysql-sum/
https://www.mysqltutorial.org/mysql-aggregate-functions.aspx
https://www.mysqltutorial.org/mysql-sum/
https://www.mysqltutorial.org/mysql-avg/
https://www.mysqltutorial.org/mysql-max-function/
https://www.mysqltutorial.org/mysql-min/
https://www.mysqltutorial.org/mysql-count/

GROUP BY c1 , c2,...,cn;

 The GROUP BY clause must appear after the

FROM and WHERE clauses.

 Following the GROUP BY keywords is a list of comma-separated columns

or expressions that you want to use as criteria to group rows.

 Example:

SELECT Emp_name FROM emp GROUP BY salary;

Subquery

 A MySQL subquery is a query nested within another query such

as SELECT, INSERT, UPDATE or DELETE. In addition, a subquery can be

nested inside another subquery.

 A MySQL subquery is called an inner query while the query that contains

the subquery is called an outer query. A subquery can be used anywhere that

expression is used and must be closed in parentheses.

 The following query returns employees who work in offices located in the

USA.

SELECT

 lastName, firstName

FROM

 employees

WHERE

https://www.mysqltutorial.org/mysql-select-statement-query-data.aspx
https://www.mysqltutorial.org/mysql-insert-statement.aspx
https://www.mysqltutorial.org/mysql-update-data.aspx
https://www.mysqltutorial.org/mysql-update-data.aspx
https://www.mysqltutorial.org/mysql-delete-statement.aspx

 officeCode IN (SELECT

 officeCode

 FROM

 offices

 WHERE

 country = 'USA');

 In this example:

 The subquery returns all office codes of the offices located in the USA.

 The outer query selects the last name and first name of employees who work

in the offices whose office codes are in the result set returned by the subquery.

 When the query is executed, the subquery runs first and returns a result set.

Then, this result set is used as an input for the outer query.

4.9 Joining Tables

 A relational database consists of multiple related tables linking together

using common columns which are known as foreign key columns.

 Because of this, data in each table is incomplete from the business

perspective.

http://www.mysqltutorial.org/mysql-foreign-key/

 For example, in the sample database, we have the orders and

 orderdetails tables that are linked using the orderNumber column:

 A join is a method of linking data between one (self-join) or more tables

based on values of the common column between the tables.

 MySQL supports the following types of joins:

 Inner join : The INNER JOIN matches each row in one table with every row

in other tables and allows you to query rows that contain columns from both

tables.

Example:

SELECT Orders.OrderID, Customers.CustomerName, Orders.OrderDate

FROM Orders

INNER JOIN Customers ON Orders.CustomerID=Customers.CustomerID;

Output:

http://www.mysqltutorial.org/mysql-sample-database.aspx
http://www.mysqltutorial.org/mysql-self-join/
https://www.mysqltutorial.org/mysql-inner-join.aspx

 Left join : The LEFT JOIN allows you to query data from two or more

tables. Similar to the INNER JOIN clause, the LEFT JOIN is an optional

clause of the SELECT statement, which appears immediately after

the FROM clause.

Example:

SELECT Customers.CustomerName, Orders.OrderID

FROM Customers

LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID

ORDER BY Customers.CustomerName;

Output:

 Right join : MySQL RIGHT JOIN is similar to LEFT JOIN, except that the

treatment of the joined tables is reversed.

Example:

https://www.mysqltutorial.org/mysql-left-join.aspx
https://www.mysqltutorial.org/mysql-inner-join.aspx
https://www.mysqltutorial.org/mysql-select-statement-query-data.aspx
https://www.mysqltutorial.org/mysql-right-join/
https://www.mysqltutorial.org/mysql-left-join.aspx

SELECT Orders.OrderID, Employees.LastName, Employees.FirstName

FROM Orders

RIGHT JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID

ORDER BY Orders.OrderID;

Output:

4.10 Set operators

 Set operations which can be performed on the table data.

 These are used to get meaningful results from data stored in the table, under

different special conditions.

 In this tutorial, we will cover 4 different types of SET operations, along

with example:

1. UNION

2. UNION ALL

3. INTERSECT

4. MINUS

1. UNION Operator

 The UNION operator is used to combine the result-set of two or more

SELECT statements.

 Each SELECT statement within UNION must have the same number of

columns

 The columns must also have similar data types

 The columns in each SELECT statement must also be in the same order

 UNION Syntax

SELECT column_name(s) FROM table1

UNION

SELECT column_name(s) FROM table2;

Example:

Select * from First

Union

Select * from second;

The result of the above query is

2. UNION ALL

 This operation is similar to Union. But it also shows the duplicate rows.

Example:

Select * from First

Union All

Select * from second;

 The result of the above query is

3. INTERSECT

 Intersect operation is used to combine two SELECT statements, but it only

returns the records which are common from both SELECT statements.

 In case of Intersect the number of columns and datatype must be same.

 Example:

Select * from First

Intersect

Select * from second;

 The following are the result of above query

4. Minus

 The Minus operation combines results of two SELECT statements and

return only those in the final result, which belongs to the first set of the

result.

 Example:

Select * from First

Minus

Select * from second;

 The following are the result of above query

4.11 Full-Text Search

 Full-Text Search in MySQL server lets users run full-text queries against

character-based data in MySQL tables.

 You must create a full-text index on the table before you run full-text

queries on a table.

 The full-text index can include one or more character-based columns in

the table.

 FULLTEXT is the index type of full-text index in MySQL.

 InnoDB or MyISAM tables use Full-text indexes.

 Full-text indexes can be created only for VARCHAR, CHAR or TEXT

columns.

 A FULLTEXT index definition can be given in the CREATE

TABLE statement or can be added later using ALTER TABLE or

CREATE INDEX.

 Large data sets without FULLTEXT index is much faster to load data

into a table than to load data into a table which has an existing

FULLTEXT index.

 Therefore create the index after loading data.

 Syntax:

MATCH (col1,col2,col3...) AGAINST (expr [search_modifier])

 col1, col2, col3 - Comma-separated list that names the columns to be

searched

 AGAINST() takes a string to search, and an optional modifier that indicates

what type of search to perform.

 The search string must be a string value. The value is constant during query

evaluation.

 There are three types of full-text searches :

https://www.w3resource.com/mysql/creating-using-databases-tables/create-table.php
https://www.w3resource.com/mysql/creating-using-databases-tables/create-table.php

 Natural Language Full-Text Searches

 Boolean Full-Text searches

 Query expansion searches

 The minimum length of the word for full-text searches as of follows :

 Three characters for InnoDB search indexes.

 Four characters for MyISAM search indexes.

 Stop words are words that are very common such as 'on', 'the' or 'it', appear

in almost every document. These type of words are ignored during

searching.

 Example:

SELECT * FROM table_name WHERE MATCH(col1, col2)

AGAINST('search terms' IN NATURAL LANGUAGE MODE)

Unit – 5

PHP with MySQL

5.1 Working MySQL with PHP:

 PHP will work with virtually all database software, including Oracle and

Sybase but most commonly used is freely available MySQL database.

 You have gone through MySQL tutorial to understand MySQL Basics.

 Downloaded and installed a latest version of MySQL.

 Created database user guest with password guest123.

 If you have not created a database then you would need root user and its

password to create a database.

We have divided this chapter in the following sections −

 Connecting to MySQL database − how to use PHP to open and close a

MySQL database connection.

 Create MySQL Database Using PHP − This explains how to create MySQL

database and tables using PHP.

 Delete MySQL Database Using PHP − This part explains how to delete

MySQL database and tables using PHP.

 Insert Data To MySQL Database − Once you have created your database

and tables then you would like to insert your data into created tables. This

session will take you through real example on data insert.

 Retrieve Data From MySQL Database − how to fetch records from MySQL

database using PHP.

https://www.tutorialspoint.com/php/connect_to_mysql_using_php.htm
https://www.tutorialspoint.com/php/create_mysql_database_using_php.htm
https://www.tutorialspoint.com/php/delete_mysql_database_using_php.htm
https://www.tutorialspoint.com/php/mysql_insert_php.htm
https://www.tutorialspoint.com/php/mysql_select_php.htm

 Using Paging through PHP − This one explains how to show your query

result into multiple pages and how to create the navigation link.

 Updating Data Into MySQL Database − This explains how to update

existing records into MySQL database using PHP.

 Deleting Data From MySQL Database − This explains how to delete or

purge existing records from MySQL database using PHP.

5.2 DATABASE CONNECTIVITY

1. Opening Database Connection

 PHP provides mysql_connect function to open a database connection.

This function takes five parameters and returns a MySQL link identifier on

success, or FALSE on failure.

 Syntax

connection mysql_connect(server,user,passwd,new_link,client_flag);

https://www.tutorialspoint.com/php/mysql_paging_php.htm
https://www.tutorialspoint.com/php/mysql_update_php.htm
https://www.tutorialspoint.com/php/mysql_delete_php.htm

Closing Database Connection

 Its simplest function mysql_close PHP provides to close a database

connection.

 This function takes connection resource returned by mysql_connect

function.

 It returns TRUE on success or FALSE on failure.

 Syntax

 bool mysql_close (resource $link_identifier);

 If a resource is not specified then last opend database is closed.

 Example:

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'guest';

 $dbpass = 'guest123';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 echo 'Connected successfully';

 mysql_close($conn);

?>

5.3 Usage Of Mysqlcommands In PHP

 MySQL works very well in combination of various programming languages like

PERL, C, C++, JAVA and PHP.

 Out of these languages, PHP is the most popular one because of its web

application development capabilities.

 PHP provides various functions to access the MySQL database and to manipulate

the data records inside the MySQL database.

 You would require to call the PHP functions in the same way you call any other

PHP function.

 The PHP functions for use with MySQL have the following general format −

mysql_function(value,value,...);

 The second part of the function name is specific to the function, usually a word

that describes what the function does. The following are the functions, which

we will use in our tutorial −

mysqli_connect($connect);

mysqli_query($connect,"SQL statement");

The following are the functions of MYSQL are:

Function Description

mysqli_affected_rows() Returns the number of affected rows in the previous

MySQL operation

mysqli_close() Closes a previously opened database connection

mysqli_connect() Opens a new connection to the MySQL server

mysqli_errno() Returns the last error code for the most recent function

call

mysqli_error() Returns the last error description for the most recent

http://www.php.net/manual/en/mysqli.affected-rows.php
http://www.php.net/manual/en/mysqli.close.php
http://www.php.net/manual/en/function.mysqli-connect.php
http://www.php.net/manual/en/mysqli.errno.php
http://www.php.net/manual/en/mysqli.error.php

function call

mysqli_fetch_all() Fetches all result rows as an associative array, a

numeric array, or both

mysqli_fetch_array() Fetches a result row as an associative, a numeric array,

or both

mysqli_fetch_assoc() Fetches a result row as an associative array

mysqli_fetch_row() Fetches one row from a result-set and returns it as an

enumerated array

mysqli_free_result() Frees the memory associated with a result

mysqli_num_rows() Returns the number of rows in a result set

mysqli_query() Performs a query against the database

mysqli_real_escape_string() Escapes special characters in a string for use in an SQL

statement

mysqli_select_db() Changes the default database for the connection

 MySQL command-line client commands

 This command allows us to connect with MySQL Server with a username and

passwords using below syntax.

 mysql -u [username] -p;

If you want to connect with a particular database, use this syntax:

 mysql -u [username] -p [database];

If you want to set a new password, use this syntax:

mysqladmin -u root password your_password;

We can clear the console window in Linux using the below command:

mysql> system clear;

http://www.php.net/manual/en/mysqli-result.fetch-all.php
http://www.php.net/manual/en/mysqli-result.fetch-array.php
http://www.php.net/manual/en/mysqli-result.fetch-assoc.php
http://www.php.net/manual/en/mysqli-result.fetch-row.php
http://www.php.net/manual/en/mysqli-result.free.php
http://www.php.net/manual/en/mysqli-result.num-rows.php
http://www.php.net/manual/en/mysqli.query.php
http://www.php.net/manual/en/mysqli.real-escape-string.php
http://www.php.net/manual/en/mysqli.select-db.php
https://www.javatpoint.com/mysql-tutorial

5.4 Processing Result Sets

 The return value of a successful mysql_query() invocation can be processed

in a number of different ways, depending on the type of query executed.

Queries Which Return Data

 For SELECT-type queries, a number of techniques exist to process the

returned data.

 The simplest is the mysql_fetch_row() function, which returns each

 record as a numerically indexed PHP array.

 Individual fields within the record can then be accessed using standard

PHP-array notation. The following example illustrates this:

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵

or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = 'SELECT itemName, itemPrice FROM items';

$result = mysql_query($query) ↵

or die ('Error in query: $query. ' . mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

// iterate over record set

// print each field

while($row = mysql_fetch_row($result))

{

echo $row[0] . " - " . $row[1] . "\n";

}

}

else

{

// print error message

echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

 Notice, in the previous listing, how the call to mysql_fetch_row() is

wrapped in a mysql_num_rows() conditional test.

 The mysql_num_rows() function returns the number of records in the result

set and comes in handy to check whether the query returned any records at

all.

5.5 Handling Errors

 Before you go out there and start building data-driven web sites, you should

be aware that PHP’s MySQL API also comes with some powerful error-

tracking functions that can reduce debugging time.

 Take a look at the following example, which contains a deliberate error in

the SELECT query string:

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵

or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = 'SELECT FROM items';

$result = mysql_query($query);

// if no result

// print MySQL error message

if(!$result)

{

echo 'MySQL error ' . mysql_errno() . ': ' . mysql_error();

mysql_close($connection);

}

?>

 The mysql_errno() function displays the error code returned by MySQL

if there’s an error in your SQL statement, while the mysql_error() function

returns the actual error message.

Using Ancillary Functions

 PHP’s MySQL API comes with a number of ancillary functions that may be

used to find out more about the databases and tables on the MySQL server

or to obtain server status information.

 The below Table lists the important functions in this category.

Table: Useful Debugging and Diagnostic Functions

5.6 Validating User Input Through Database Layer And Application Layer

Setting Input Constraints at the Database Layer:

 When it comes to maintaining the integrity of your database, a powerful tool

is provided by the database system itself: the capability to restrict the type of

data entered into a field or make certain fields mandatory, using field

definitions or constraints.

Using the NULL Modifier

 MySQL enables you to specify whether a field is allowed to be empty or if it

must necessarily be filled with data, by placing the NULL and NOT NULL

modifiers after each field definition.

 This is a good way to ensure that required fields of a record are never left

empty, because MySQL will simply reject entries that do not have all the

necessary fields filled in.

 Here’s an example of this in action:

mysql> CREATE TABLE products (

-> id int(4),

-> name varchar(50)

->);

Query OK, 0 rows affected (0.06 sec)

 Here, the name field can hold NULL values, which means the following

INSERT will go unchallenged,

mysql> INSERT INTO products VALUES (NULL, NULL);

Query OK, 1 row affected (0.06 sec)

and create the following nonsense entry in the table:

 mysql> SELECT * FROM products;

 Now, look what happens if you make the name field mandatory:

mysql> CREATE TABLE products (

-> id int(4),

-> name varchar(50) NOT NULL

->);

Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO products VALUES (NULL, NULL);

ERROR 1048: Column 'name' cannot be null

 Of course, because MySQL makes a distinction between a NULL value and

an empty string (''), the following record—which is also meaningless—

would be accepted.

mysql> INSERT INTO products VALUES ('', '');

Query OK, 1 row affected (0.05 sec)

mysql> SELECT * FROM products;

 Thus, while the NOT NULL modifier can help reduce the incidence of

empty or incomplete records in a database, it is not a comprehensive

solution.

 It needs to be supplemented by application-level verification to ensure that

empty strings are caught before they get to the database.

Validating Input at the Application Layer

 When it comes to catching errors in user input, the best place to do this is at

the point of entry—the application itself.

 you can use to catch common input errors and ensure that they don’t get into

your database.

Checking for Required Values

 One of the most common mistakes a novice programmer makes is forgetting

to

check for required field values.

This can result in a database with numerous empty records, and these empty

records can, in turn, affect the accuracy of your queries.

 To see what I mean by this, consider the following users table:

mysql> CREATE TABLE users (

-> username varchar(8) NOT NULL DEFAULT '',

-> password varchar(8) NOT NULL DEFAULT ''

->) TYPE=MyISAM;

 Query OK, 0 rows affected (0.05 sec)

 EXAMPLE

//connect to database

// open connection

$connection = mysql_connect('localhost', 'guest', 'pass') ↵

or die ('Unable to connect!');

// select database

mysql_select_db('db2') or die ('Unable to select database!');

// create query

$query = "INSERT INTO users (username, password) ↵

VALUES ('$username', '$password')";

// execute query

$result = mysql_query($query) ↵

or die ("Error in query: $query. " . mysql_error());

// close connection

 mysql_close($connection);

5.7 Formatting Character Data

 A lot of your MySQL data is going to be stored as strings or text blocks, in

CHAR, VARCHAR, or TEXT fields.

 It’s essential that you know how to manipulate this string data and adjust it

to fit the requirements of your application user interface.

 Both PHP and MySQL come equipped with numerous string manipulation

functions (in fact, they overlap in functionality in many places).

Concatenating String Values

 It’s pretty simple—just string together the variables you want to concatenate

using the PHP concatenation operation, a period (.).

 Concatenating fields from a MySQL result set is equally simple—just assign

the field values to PHP variables and concatenate the variables together in

the normal manner.

Padding String Values

 you read about the PHP trim() function, used to strip leading and trailing

white space from string values prior to testing them for validity or inserting

them into a database.

 However, PHP also comes with the str_pad() function, which does just the

reverse: it pads strings to a specified length using either white space or a

user-specified character sequence.

 This can come in handy if you need to artificially elongate string values for

display or layout purposes.

Altering String Case

 If you need case manipulation, just reach for PHP’s string manipulation API

again.

 Four useful functions are here:

 strtolower(), which converts all characters in a string to lowercase;

 strtoupper(), which converts all characters to uppercase;

 ucfirst(), which converts the first character of a string to uppercase, and

 ucwords(), which converts the first character of all the words in a string to

uppercase.

5.8 Dealing with Special Characters

 When it comes to displaying large text blocks on a web page, a PHP

developer must grapple with a number of issues.

 Special characters need to be protected, white space and line breaks must be

preserved, and potentially malicious HTML code must be defanged.

 PHP comes with a number of functions designed to perform just these tasks.

 The revised listing uses three new functions.

■ The htmlentities() function takes care of replacing special characters

like ", &, <, and > with their corresponding HTML entity values. This

function is useful to defang user-supplied HTML text and render it incapable

of effecting the display or functionality of your web page.

■ Next, the wordwrap() function wraps text to the next line once it reaches a

particular, user-defined size, by inserting the /n newline character at

appropriate points in the text block (these are then converted into HTML

line breaks by the next function).

■ Finally, the nl2br() function automatically preserves newlines in a text

block, by converting them to HTML
 elements. This makes it possible

to reproduce the original formatting of the text when it is displayed.

5.9 Formatting Numeric Data

 Just as you can massage string values into a number of different shapes, so,

too,can you format numeric data.

 Both PHP and MySQL come with a full set of functions to manipulate

integer and floating-point numbers, and to format large numeric values for

greater readability.

Using Decimal and Comma Separators

 When it comes to formatting numeric values in PHP, there are only two

functions:

1. number_format()

2. sprintf()

 It can be used to control both the visibility and the appearance of the decimal

digits, as well as the character used as the thousands separator.

 To see how this works, consider the following table:

mysql> SELECT accountNumber, accountName, accountBalance FROM

accounts;

 Here’s a PHP script that displays this information on a web page, using

number_format() to display account balances with two decimal places and

commas as thousand separators.

The PHP sprintf() function is similar to the sprintf() function that

C programmers are used to. To format the output, you need to use field

templates,templates that represent the format you’d like to display. Common field

templates are listed in Table

<?php

// returns 00003

echo sprintf("%05d", 3);

// returns $25.99

echo sprintf("$%2.2f", 25.99);

// returns ****56

printf("%'*6d", 56);

?>

5.10 Formatting Dates and Times

 you can use PHP’s mktime() function to obtain a UNIX timestamp for any

arbitrary date/time value.

 PHP offers the date() function, which accepts two arguments: one or more

format specifiers, which indicates how the timestamp should be formatted,

and the timestamp itself (optional; PHP assumes the current time if this

second argument is not provided).

 To see a few examples of the date() function in action, create and run the

following script:

<?php

// retrieve current date and time

// prints a date and time like "09:18 pm 19 Jun 2004"

echo date("h:i a d M Y", mktime());

// returns just the date "27 April 2003"

echo date("d F Y", mktime(0, 0, 0, 04, 27, 2003));

// returns the time in 24-hr format "21:18"

echo date("H:i", mktime());

?>

 The following table display Common Format Specifiers Supported by the

date() Function

Example:

SELECT DATE_FORMAT(NOW(), '%W, %D %M %Y %r');

Output:

+--+

| DATE_FORMAT(NOW(), '%W, %D %M %Y %r') |

+--+

| Thursday, 18th November 2004 12:07:55 PM |

 The following tables have MySQL Date/Time Formatting Codes

Example:

mysql> SELECT TIME_FORMAT(19690609140256, '%h:%i %p');

Output:

+---+

| TIME_FORMAT(19690609140256, '%h:%i %p') |

+---+

| 02:02 PM |

+---+

 The following table display the More MySQL Date Functions

Example:

SELECT DAYOFMONTH(NOW()), DAYOFYEAR('1979-01-02');

+-------------------+-------------------------+

| DAYOFMONTH(NOW()) | DAYOFYEAR('1979-01-02') |

+----------------------------------+------------------------------------+

| 23 | 2 |

